Journal cover Journal topic
Drinking Water Engineering and Science An interactive open-access journal
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.08 CiteScore
    1.08
  • SNIP value: 0.624 SNIP 0.624
  • SJR value: 0.278 SJR 0.278
  • IPP value: 1.09 IPP 1.09
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 14 Scimago H
    index 14
DWES | Articles | Volume 11, issue 2
Drink. Water Eng. Sci., 11, 101-105, 2018
https://doi.org/10.5194/dwes-11-101-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Drink. Water Eng. Sci., 11, 101-105, 2018
https://doi.org/10.5194/dwes-11-101-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technical note 08 Nov 2018

Technical note | 08 Nov 2018

Technical note: Problem-specific variators in a genetic algorithm for the optimization of drinking water networks

Karel van Laarhoven et al.
Related authors  
Review of applications for SIMDEUM, a stochastic drinking water demand model with a small temporal and spatial scale
Mirjam Blokker, Claudia Agudelo-Vera, Andreas Moerman, Peter van Thienen, and Ilse Pieterse-Quirijns
Drink. Water Eng. Sci., 10, 1-12, https://doi.org/10.5194/dwes-10-1-2017,https://doi.org/10.5194/dwes-10-1-2017, 2017
Short summary
Related subject area  
Distribution: Network design
Inclusion of tank configurations as a variable in the cost optimization of branched piped-water networks
Nikhil Hooda and Om Damani
Drink. Water Eng. Sci., 10, 39-44, https://doi.org/10.5194/dwes-10-39-2017,https://doi.org/10.5194/dwes-10-39-2017, 2017
Short summary
All-in-one model for designing optimal water distribution pipe networks
Dagnachew Aklog and Yoshihiko Hosoi
Drink. Water Eng. Sci., 10, 33-38, https://doi.org/10.5194/dwes-10-33-2017,https://doi.org/10.5194/dwes-10-33-2017, 2017
Short summary
Pump schedules optimisation with pressure aspects in complex large-scale water distribution systems
P. Skworcow, D. Paluszczyszyn, and B. Ulanicki
Drink. Water Eng. Sci., 7, 53-62, https://doi.org/10.5194/dwes-7-53-2014,https://doi.org/10.5194/dwes-7-53-2014, 2014
Modelling water quality in drinking water distribution networks from real-time direction data
S. Nazarovs, S. Dejus, and T. Juhna
Drink. Water Eng. Sci., 5, 39-45, https://doi.org/10.5194/dwes-5-39-2012,https://doi.org/10.5194/dwes-5-39-2012, 2012
Robust optimization methodologies for water supply systems design
J. Marques, M. C. Cunha, J. Sousa, and D. Savić
Drink. Water Eng. Sci., 5, 31-37, https://doi.org/10.5194/dwes-5-31-2012,https://doi.org/10.5194/dwes-5-31-2012, 2012
Cited articles  
Alperovitz, E. and Shamir, U.: Design of Optimal Water Distribution Systems, Water Resour. Res., 13, 885–900, 1977. 
Bieupoude, P., Azoumah, Y., and Neveu, P.: Optimization of drinking water distribution networks: Computer-based methods and constructal design, Comp. Env. Urb. Sys., 36, 434–444, 2012. 
Calegari, P., Coray, G., Hertz, A., Kobler, D., and Kuonen, P.: A taxonomy of evolutionary algorithms in combinatorial optimization, J. Heur., 5, 145–158, 1999.  
De Corte, A. and Sörensen, K.: Optimisation of gravity-fed water distribution network design: a critical review, Europ. J. of Oper. Res., 228, 1–10, 2013. 
El-Mihoub, T. A., Hopgood, A. A., Nolle, L., and Battersby, A.: Hybrid Genetic Algorithms: A Review, Eng. Let., 13, 124–137, 2006. 
Publications Copernicus
Download
Short summary
This paper concerns the extension and tuning of a genetic algorithm used for the automated design of optimal drinking water distribution networks. Different settings and extensions are tested for their effect on the speed and reproducibility with which the algorithm can produce good results. The fastest combinations are reported. Speed and reproducibility are key conditions for drinking water utilities to include the use of optimization algorithms in the regular design process of mains.
This paper concerns the extension and tuning of a genetic algorithm used for the automated...
Citation
Share