Journal cover Journal topic
Drinking Water Engineering and Science An interactive open-access journal
Journal topic

Journal metrics

Journal metrics

  • CiteScore value: 1.37 CiteScore
    1.37
  • SNIP value: 1.693 SNIP 1.693
  • SJR value: 0.307 SJR 0.307
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 15 Scimago H
    index 15
Volume 10, issue 2
Drink. Water Eng. Sci., 10, 69–74, 2017
https://doi.org/10.5194/dwes-10-69-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Computing and Control for the Water Industry, CCWI 2016

Drink. Water Eng. Sci., 10, 69–74, 2017
https://doi.org/10.5194/dwes-10-69-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 15 Aug 2017

Research article | 15 Aug 2017

Flow intake control using dry-weather forecast

Otto Icke1, Kim van Schagen1, Christian Huising2, Jasper Wuister1, Edward van Dijk1, and Arjan Budding2 Otto Icke et al.
  • 1Business Unit Water, Royal HaskoningDHV, Amersfoort, 3800 BC, the Netherlands
  • 2Policy Department, Water authority Vallei en Veluwe, Apeldoorn, 7320 AC, the Netherlands

Abstract. Level-based control of the influent flow causes peak discharges at a waste water treatment plant (WWTP) after rainfall events. Furthermore, the capacity of the post-treatment is in general smaller than the maximum hydraulic capacity of the WWTP. This results in a significant bypass of the post-treatment during peak discharge. The optimisation of influent flow reduces peak discharge, and increases the treatment efficiency of the whole water cycle, which benefits the surface water quality. In this paper, it is shown that half of the bypasses of the post-treatment can be prevented by predictive control. A predictive controller for influent flow is implemented using the Aquasuite® Advanced Monitoring and Control platform. Based on real-time measured water levels in the sewerage and both rainfall and dry-weather flow (DWF) predictions, a discharge limitation is determined by a volume optimisation technique. For the analysed period (February–September 2016) results at WWTP Bennekom show that about 50 % of bypass volume can be prevented. Analysis of single rainfall events shows that the used approach is still conservative and that the bypass can be even further decreased by allowing discharge limitation during precipitation.

Publications Copernicus
Download
Short summary
Flow intake based on predictive control using dry-weather flow and rainfall predictions offers reduced peak discharges on the waste water treatment plants. This results in a better performance of the waste water treatment plant and particularly the utilisation of the post-treatment phase. Results at waste water treatment plant Bennekom show that about 50 % of bypass volume of the post-treatment phase can be prevented with operational predictive control. This improves the surface water quality.
Flow intake based on predictive control using dry-weather flow and rainfall predictions offers...
Citation